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Direct numerical simulation of turbulent
condensation in clouds

By R. Paoli AND K. Shariff t

1. Motivation and objectives

Clouds are responsible for precipitation, scattering and absorption of electromagnetic
energy, and cloud particles serve as sites for chemical reactions. To properly incorporate
these processes in cloud-resolving codes or climate models, the crucial quantity required
is the droplet size spectrum n(r) within a computational cell, defined such that ndr
gives the number of particles in the cell having radii between r and r + dr. The role of
turbulence in clouds has been the object of intensive investigation in the atmospheric
science community over the last forty years. (Consult the reviews by Pinsky & Khain
1997, Vaillancourt & Yau 2000, and Shaw 2003). Turbulence has three effects on the
development of the droplet size spectrum: (i) During the initial phase of condensational
growth it causes each particle to experience a different fluctuating supersaturation as it is
transported and this leads to a broadening of the spectrum (Cooper 1989). (ii) Turbulence
causes particles to cluster when they become large enough that particle inertia becomes
important; this clustering eventually influences the size spectrum during the coagulation
phase. (iii) Finally, during the coagulation phase, turbulence increases the number of
particle encounters. The present work aims to further elucidate the first of these effects
with a view to developing sub-grid models for it. In the atmospheric sciences literature,
this effect is referred to as “stochastic condensation.”

The first step in current approaches for modeling stochastic condensation (see for
example Khvorostyanov & Curry 1999q) is to write down the transport equation,
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for the particle size distribution f(x,r,t). Here f(x,r,t)dxdr gives the number of par-
ticles in the four dimensional phase space volume dx dr at (x,r). The next step follows
the standard approach for Reynolds averaging. Decomposing variables into mean and
fluctuating parts, f = f + f', r = 7 + 7/, and averaging the entire equation leads to the
appearance of covariances like u;- f! or 7 f which are modeled using a mixing length ap-

(1.1)

proach. Khvorostyanov & Curry (1999b) were able to obtain a solution for f in terms of
gamma functions which is an attractive result as many observed cloud-droplet distribu-
tion can be fitted with gamma distributions (Shaw 2003). One of the assumptions made
by those authors was to use a linear relation between droplet growth rate and supersat-
uration fluctuations, 7' ~ S’ based on the analysis by Srivastava (1989) and heuristic
considerations about the equivalence between Brownian motion of small particles and
the motion of turbulent eddies.

In this brief, we investigate the turbulent condensation of a population of droplets by
means of direct numerical simulation. To that end, a coupled Navier-Stokes/Lagrangian
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solver is used (see Paoli et al. 2004) where each particle is tracked and its growth by
water vapor condensation is monitored exactly. The main goals of the study are to find
out whether turbulence broadens the droplet size distribution, as observed in in situ
measurements. The second issue is to understand if and for how long a correlation between
the droplet radius and the local supersaturation exists for the purpose of modeling sub-
grid scale microphysics in cloud-resolving codes.

This brief is organized as follows. In Sec. 2 the governing equations are presented,
including the droplet condensation model. The implementation of the forcing procedure
is described in Sec. 3. The simulation results are presented in Sec. 4 together with a
sketch of a simple stochastic model for turbulent condensation. Conclusions and the
main outcomes of the study are given in Sec. 5.

2. Governing equations

The dimensionless forced compressible Navier-Stokes equations are

% . %;jj) o (2.1)
O(g;u) 6(081;:%) 665, _ ég:; +pfi,i=1,...,3 (2.2)
i - T Y
0(;(;?) a(pal;};uj) _ Re{qcn 6523? + pwn + pan, n=1,2. (2.4)

Here p is the density, u = [u1,u2, us] is the velocity vector, p is the pressure, E is the
total energy, Q = [Q1, Q2, Qs3] is the heat flux vector given by Fourier’s law, C, being the
non-dimensional specific heat at constant pressure. The quantity 7;; is the shear stress
tensor, and Y,,,n = 1,2 are scalar fields, Y; being the temperature 7" and Y, the vapor
mass fraction Y,, while w,, are physical source terms for Y,,. In the case of water vapor
(Y2 =Y,), ws = w, represents the removal of vapor due to condensation. Quantities are
made non-dimensional using reference values: pret for the density, arer for the velocity, pres
for the pressure, l,¢r for length, Tier for temperature, per for the dynamic viscosity, and
Cp rer for the specific heat. The Reynolds number is defined as Re = avef lrer / (iref/ pref)-
The Schmidt number is defined as S¢;, = piret/pret Dn, where D, is the diffusivity of scalar
n. For atmospheric conditions vapor diffusivity (given in Pruppacher & Klett 1997, p. 503
is not too different from thermal diffusivity and so we chose S¢ = 0.75 for both vapor and
temperature. Finally, the terms pf;, pW, pgi , and pgs in (2.2)-(2.4) represent forcing
of momentum, total energy, temperature and vapor, respectively and are described in
detail in the next section.

The use of compressible equations to simulate atmospheric clouds requires some com-
ment since use of the incompressible or Boussinesq equations is more common. The rms v’
of velocity fluctuations in clouds is of the order of 1 to a few meters per second (MacPher-
son & Isaac 1977). For ' = 3 m/s and speed of sound a = 300 m/s, the turbulence Mach
number My = u'/a = 0.01. If we were to choose a similar M; for the simulations, the
CFL criterion would lead to a time step that is very small compared with the flow time.
Instead we chose M; ~ 0.05 for the simulations. This leaves the velocity field essentially
incompressible, but allows one to run with an affordable time step. However, in weakly
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compressible flow, temperature fluctuations are induced by pressure fluctuations and are
proportional to M?. Furthermore the mechanisms for temperature fluctuations in the
atmosphere are not unrelated to flow induced pressure fluctuations. Thus we have no
right to derive the temperature from the energy E which obeys (2.3). For this reason,
temperature is obtained independently by solving a scalar transport equation for Y; = T'.

2.1. Particle treatment

Due to their small size (less than about ten microns during the condensation phase), the
relaxation time 7, = 4p, r? /18y of particles is short compared to the smallest turbulence
time scale. They can then be treated as tracers which follow the gas according to

dxp

dt
Gas variables at a particle location x, are estimated by linear interpolation, using the
values at the nodes of the surrounding cell (see Boivin et al. 1998 for details). For the law
of droplet growth by condensation we start with equation (15.74) in Seinfeld & Pandis
(1997) and ignore the solute contribution to the equilibrium vapor pressure over the
drop. We retain the latent heat term as well as the curvature contribution (Kelvin effect)
and the kinetic corrections to effective vapor and temperature diffusivities. (We verified
a posteriori that the last two contributions are negligible for drops > 1um). We are thus
left with

= u(x,,1). (2.5)

dr  a(r,T)S

bt et U el i 2.6

dt T (2:6)
where S =Y, — Y (T) is the local supersaturation with respect to water and a(r,T)
is a coeflicient that depends on temperature and droplet size. Saturation conditions are
obtained from the fit by Sonntag (1994)

pi=pX:=exp(ailnT +axT ' +a3+asT+asT?) (2.7)

where the mass fraction Y;?(T") and molar fraction X3(T) at saturation are related by
Y= X3/(XE + (1= X2) Wair/Wy), with Wi /W, = 28.85/18.01 = 1.6.

2.2. Numerical method

The gas transport equations (2.1)—(2.4) are discretized in physical space by means of
the sixth order compact scheme by Lele (1992). They are advanced in time together
with (2.5)—(2.6), using a 3rd order Runge-Kutta scheme. Periodic boundary conditions
are used in the three directions of the computational cube which has sides Lo, = 2.
The code is parallelized using domain decomposition with MPI as the communication
protocol.

3. Turbulence forcing

In order to obtain a statistically stationary velocity field, a body force f(x,t) =
[f1(x,1), f2(x,t), f3(x,t)] is applied to the momentum equations. Physically, this rep-
resents the effect of processes such as turbulence production by shear and the turbulent
cascade which occur on scales larger than the computational box. To preserve univer-
sality of the smallest scales of turbulence, only the (low) vector-valued wavenumbers k
within the sphere k = |[k| < ky are forced. The force is represented as a finite Fourier
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series (see Eswaran & Pope 1988a)

=) e f(k,1) (3.1)

k<ks

where f(k, 1) = [fi(k, 1), (f2k, 1), f3(k, 1)] and f;(k,t) = fF(k,t)+i f](k,1) is the Fourier
transform corresponding to k = ko [l,m,n] (ko = 2m/Lpor = 1 being the fundamental
Wavenumber) while the summation is intended over the three components, | = —N/2 +

, »N/2; m=—-N/2+1,.,N/2; n==N/2+1,.., N/2, with the condition k = ko(I* +
m? + n?)'/?2 < k;. At each wavenumber, f(k,t) is obtained from the divergence-free
projection

Bk, £) = gk, £) - (k- g(k,1)/k*) k, (3:2)
of the three-dimensional stochastic process g(k,t) = [g1(k,?), g2(k,t), §3(k,t)] which is
composed of six independent Uhlenbeck-Ornstein (UO) processes corresponding to the
real and imaginary parts of g;(k,t) = gf(k,t) +igj(k,t),j = 1,...,3. These processes
are governed by the Langevin stochastic differential equation (Lemons 2002),

R,I
9; (k, t)
Tf

dt + N0, 1) zafdt (3.3)
Tf

dg" (k1) = g (k,t + dt) — g;" (K, 8) = —
where 7; and o are, respectively, the autocorrelation time and standard deviation of all
processes, while Ntt+dt(0, 1) is a normally distributed random number with zero mean
and unit variance associated with the time interval [¢;¢ + dt]. From (3.3) it can be easily
shown that each UO process has zero ensemble-mean and is exponentially auto-correlated
with time lag 7y, i.e.

(97" 1,0)) =0 (3.4)
< Tk, ) g™ (k, t+s)> = o258l /71 (3.5)

Using the condition that f; be real (ie. ff(-k) = ffi(k), f/(-k) = —f/(k)) and
the requirement f fj dV = 0 that the force not change the net linear momentum (i.e.
fF(0) = f{(0) = 0), one has for the forcing terms f; and W in (2.2) and (2.3)

N/2 N/2 N/2

i(x,t) —2222 kat cos(k - x) — f(k t)sin(k-x)], k<ks (3.6)

I=1 m=1n=1
ijxtujxt /Zf] (v, t) u;i(y,t)dV (y). (3.7

The quantity W represents the work done by the force and must be added in compressible
flows to maintain consistency between the momentum and energy equations (see e.g. Kida
& Orzag 1991). In the statistically stationary state the amount of work done by the forcing
equals viscous dissipation to heat. The integral term in (3.7) removes thermal energy in
the mean and is necessary to keep the mean internal energy in the computational box
from monotonically increasing due to viscous heating.

3.1. Scalar forcing

Let us now consider the forcing terms ¢, in the scalar equations (2.4), and for the
sake of clarity neglect the subscript n which simply identifies the scalar (temperature or
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water vapor). The same stochastic forcing as described above is used in (2.4) to drive
temperature and vapor fluctuations at the large scales. In actual clouds it is convection
and mixing between air parcels, and radiation, etc. that drive the fluctuations. Following
the usual approach, one can decompose ¢(x,t) as

=Y %Gk,t), with 4(k,t) = ¢"(k,t) +iq" (k, 1), (3-8)
k<kjs

where ¢?(k,t) and ¢ (k,t) are chosen to be UO processes defined by

Lk, t
dg™! (k,t) = _g it dt + NJT4(0,1) /2 og@, (3.9)
Tq Tq
Using the fact that g(x,t) is real one obtains finally
N/2 N/2 N/2
q(x,t) =2 Z Z Z )cos(k - x) — ¢’ (k,t)sin(k - x)], k< ky. (3.10)

=1 m=1n=1

In (3.9), we chose 7, = 74 assuming that the same process, namely large eddies, drive
scalar and velocity fluctuations. The ampltitude parameter o, could be obtained by
requiring that the standard deviation of the resulting scalar field (temperature or vapor
concentration) be in the range of atmospheric values. Strictly speaking this can only be
verified a posteriori, however, one can obtain a good prediction of the resulting variance
by using the assumption of a particle system, as often done in the simulation of turbulent
flows (see Pope 2000). In these kinds of methods, the flow is regarded as an ensemble of
fluid particles each carrying a different value for the scalar Y which evolves according to
a Langevin equation

dy (t) = —w dt + ) [q"(k,t) + ¢" (k, 1)] (3.11)
m k=1
dg™! (k,t) = —w dt + NiT4(0,1) 4 /2 03? (3.12)

where Ny indicates all forced modes. The first term in (3.11) is a classical exchange-with-
the-mean mixing model, 7, being the mixing time (usually taken to be the integral time
scale 7, of the flow) which is assumed to be equal to forcing time scale, 7,,, = 7¢. From
(3.11) one may then derive

Nys/2
At > (g™ (k1) + ¢" (k,1)]) = 0 (3.13)
do? k_la Ny /2
=T 2L (Vi) + (1), (3.14)

Using (3.4)-(3.5) and (3.9), one finally gets to
(Y') = const = (Y), (3.15)

2 2 2
o, 2t t
oy (t) = Ny 42 ¢ (1 — e /e - Z e 2t/Te _ e_“/“> (3.16)

Te Te
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N Re 4 =+/2/3K Le/Lbox Rex kmazn ovi/ (Y1) ovy/{(Y2)

64 2000 0.05 0.162 49 1.15 0.001 0.001
128 3333 0.05 0.162 69 1.68 0.001 0.001

TABLE 1. Flow-field parameters
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F1GURE 1. (a) Evolution of the standard deviation of the three componets of the velocity field.
Particles are introduced at t/7. = 10 when the velocity field is statistically stationargr. (b) Energy
spectra normalized by the Kolmogorov length n and velocity w,. Solid line: 128° simulation;

dashed line: 64® simulation; symbols: Rey ~ 69 grid-turbulence experiments of Comte-Bellot &
Corrsin (1971).

which shows that oy achieves a stationary value oy, which satisfies

2 1/2
Oq = T¥eo <N_f) . (317)

Te

This relation can be used to design o,, knowing some characteristic values for oy, in the
atmosphere. For temperature (Y — Y; = T') and vapor concentration (Y — Y3 = Y,),
Kulmala et al. (1997) report or,, ~ 0.3K and oy,  ~ 1.4 x 105, which give, for the
present simulations, g,, = 2.2x 1073, and g4, = 1.0 x 107¢. We verified a posteriori that
these choices did indeed lead to the desired fluctuation levels (see next section).

4. Simulation Results

For each simulation a statistically stationary turbulent flow is first generated according
to the method described above. The radius of the sphere of forced wavenumbers is ky =
V/8, giving a total of N t = 92 forced modes. The standard deviation and autocorrelation
time scale of the stochastic forcing were chosen to be, respectively, o7 = 1.339 x 10~* and
7 = 20.8 (the same as in Eswaran & Pope 1998b). The resulting turbulence statistics of
the flow are provided in Table 1, where kpmez = 7N/ Lpog, K = 1/2 (02 +02,+02,) is the
turbulent kinetic energy, L, = Ly; is the longitudinal integral length scale, Rey = u'\/v
is the Reynolds number based on the Taylor microscale A (see Pope 2000 for details).
These statitsics were obtained by averaging over samples collected between ¢t = 107,
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FIGURE 2. Evolution of the statistics of droplet radii r and supersaturation S. (a) Mean values
(r) and (S). The three rising curves show (r) while the three falling curves show (S). (b) Standard
deviations o, and os. The three rising curves show o, while the three fluctuating curves show
ogs. Line types: , vapor equation is forced throughout (case 1); ———- , vapor forcing is
removed at particle insertion (case 2); —-— , vapor equation is unforced throughout and the
vapor field when particles are inserted is set to be random Gaussian (case 3).

when the velocity fluctuations reach their statistically stationary value, up to about
t = 507; see Fig. la. This figure shows that velocity fluctuations are isotropic; this
was also confirmed by examining the two-point longitudinal and transverse correlation
functions (not shown). The bulk of the simulations were performed on a 64 grid; the
rest employed a 1282 grid which gives a higher Rey and allows validation of the method
against the grid-turbulence experiments of Comte-Bellot & Corrsin (1971) (see Fig. 1b).

Scalar equations are also forced with the same method, with the means set to (T') =
292K and (Y,) = 0.01415, respectively. The resulting standard deviations are or =~
0.29K and oy, ~ 1.4 x 10~°, which are in the range of atmospheric values reported in
the literature (see Kulmala et al. 1997).

At t/7. = 50, N, = 962 droplets are randomly distributed in the computational domain
and time is then reset to zero. Their number was chosen to satisfy two major constraints:
first, it must be high enough that accurate Lagrangian statistics can be obtained, and
second, the particle spacing A = (Vol /Np)l/ 3 must be of the same order of the Kolmogrov
scale as in clouds (see Sec. 1). This was indeed verified in the present DNS where A =
27/96 = 0.67 A or A = 1.8 (for the 643 simulations).

The reference length is taken to be lof = 2.5 cm which implies a dimensional box
size of 15.7 cm (for a kinematic viscosty of air vief = firet/pret = 1.5 x 1075 m? /s, this
also sets a reference velocity ares = Vrer Re/lrer = 1.2m/s, and turbulent fluctuations
Ou;aref ~ 6cm/s). The droplets are initially monodisperse with radius 7o = 5 um.

Figure 2 shows the time evolution of the statistics of droplet size and of the local
supersaturation. Three cases were run with different types of forcing of the vapor field.
Each case is shown using a different line type and is described in the caption. As the mean
radius (r) increases by condensation, the mean supersaturation (S) decreases due to mass
conservation. However, their standard deviations are quite different: o, increases, up to
about 1 ym while og fluctuates about a certain value. Apart for a short transient in case
3 which is due to the adjustment of water vapor to the turbulent flow, the insensitivity
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FIGURE 3. Time evolution of droplet size distribution: (a) Case 1; (b) Case 3; —— ,
1=0207¢; —=== , t="Te; — — , E =2T¢; -0 ,t=057e.

of the results to vapor forcing implies that in the present simulations supersaturation
fluctuations are mainly controlled by temperature fluctuations.

The increase in o, reflects broadening of the droplet size spectrum, as is often observed
in cloud measurements (Shaw 2003). This is further shown in Fig. 3 where the distribution
of particle radius is plotted at various instants. The mechanism of broadening is that each
individual droplet absorbs a fraction of the available supersaturation, depending on the
local thermodynamic conditions and water vapor concentration, and grows with its own
rate, according to (2.6). Integrating the latter gives

t
r(t) = rg +/ 205 (t) dt (4.1)
0
which shows that the square of the radius r depends on the time history of supersaturation
S. In particular, for two droplets i and j and for a short time ¢ the difference in the
radius goes like 77 — r? ~ t(S; — S;). Equation (4.1) also indicates that r and S initially
develop a correlation but subsequently turbulent fluctuations decorrelate them. This is
clearly shown in Fig. 4 where the correlation coefficient Crs = (r'S') /o,05 (S’ being
evaluated at particle locations) is shown for the two cases with and without forcing
the vapor transport equation. The figure shows that, at least for the present Re) and
dissipation rate, the correlation coefficient is > 0.5 up to t = 71/ = 57¢. It is interesting
to compare 71/ with the characteristic condensation time for a cloud, which coincides
with the supersaturation absorption time (see Khvorostyanov & Curry 1999a), 75 =
(4w (r)g D2N,/Vol) . In non-dimensional form, this is 7y = 167 ~ 87, or 75 ~ 1.6 71>
for the current simulations. Figure 5 shows scatter plots of r and S at different times
for case 1. As the previous figure, they show that S'/os = r'/o, up to t ~ 27,. This
result may be used to model the droplet microphysics at the sub-grid scale level in cloud
resolving LES, as mentioned e.g. by Paoli & Shariff (2003), and discussed next.

4.1. Towards a stochastic model of condensation

One goal of this work was to study the correlation between droplet radius and local
supersaturation in a cloud and, eventually, to model it for application in cloud-resolving
LES codes. The object of this section is to propose a modeling methodology.

The concept of fluid particles has already been used in Sec. 3 to derive a simple re-
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FIGURE 4. Temporal evolution of the radius-supersaturation correlation coefficient: solid line,
case 1; dashed line, case 3.
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lation between o, and oy, . The same approach is used here for a system of physical
droplets, as they have negligible inertia and exactly follow fluid particles. Thus, averag-
ing over droplets is equivalent to volume averaging provided the number of droplets is
“sufficiently” high. This has been verified for the present simulations. Assuming a statis-
tically stationary temperature forcing and neglecting water vapor forcing, one can use a
Lagrangian formulation to describe temperature and vapor evolution around a physical
droplet,

dy, = _Y = () dt — Amapyn,r’r (4.2)

Te
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or oy
FIGURE 5. Evolution of the scatter plot of droplet radius and supersaturation for case 1
(rF=r—(),5=5S—(9)):(a) t=0257; (b)t=7¢; (c) t =27¢; (d) t =5 7e.

T —(T [
dT = —# dt + /203, ? Nit0,1) (4.3)

where n, is the droplet number density and p,, is the water density. Expanding the
supersaturation S in (2.7) around the ambient temperature T, one gets after some
algebra

dY,
T

V(D) = Vi) + )T (T = To) = Vi(Tu) [1 4 uolT ~Tos)] (4

with poo = a1 Tog! — as T2 + as + 2a5 Too. Substituting the latter into Eqgs. (4.2) and
(4.3) and rewriting for completeness the equation for the growth of droplet radius gives

S —(S) .
=" oo Vs (Too)1/ 202 — Amapynyr? 4.
ds . dt + ¢ (Too)/ 207, dt — ATapynpr=7 (4.5)
dr = O‘T—S dt (4.6)
Taking the average of these equations over a population gives
d(S)
ek —Anapyn, (Sr) = —4napyn, ((S) (r) + Cs, 0,05) (4.7)
a6y _aw? | d(o?)
g T = 2 . 4
dt a a2 (48)

The problem then is to close, using information from the DNS, the covariances that
appear when taking higher moments of r and S (such as, for example, the correlation
between r’ and S’). This represents the object of our current research.

5. Conclusions

In this brief, a direct numuerical simulation of the turbulent condensation of a popu-
lation of droplets was perfomed using a coupled Navier-Stokes/Lagrangian code. Forcing
of the small wavenumbers was used to sustain velocity, vapor, and temperature fluctua-
tions. The resulting supersaturation fluctuations were responsible for the broadening of
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the droplet size distribution in agreement with in situ measurements. Finally, a sketch
of a possible approach for modeling the correlation between droplet size and supersatu-
ration for use in cloud resolving LES was presented.

Computational resources were provided by the NAS Supercomputing Division at NASA
Ames Research Center which is gratefully aknowledged. The first author wishes to thank
the Center for Turbulence Research for its hospitality during his post-doctoral stay at
NASA Ames and Stanford University.
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